Skip to main content

NTHS Curriculum Syllabus

All listed concepts are from the 4-Level track.


Algebra II


Unit 1

Chapter Numbers: 1.1, 2.4, 1.2, 1.3

  • Absolute Value Inequalities

  • Radicals

  • Complex Numbers

  • Simplifying Rational Expressions

Unit 2

Chapter Numbers: 3.1, 3.2, 3.3, 3.4, 2.7, 3.5, 3.7

  • Odd/Even Functions

  • Composite Functions

  • Circles (equation)

Unit 3

  • Solving high degree polynomial equations

  • Solving exponential and radical equations

  • Graphing exponential and radical functions

  • Solving equations with two absolute values

  • Domain, Range, Increasing/Decreasing, zeros

Unit 4

Chapter Numbers: 4.1, 4.2, 4.3

  • End behavior (w/o limit notation)

  • Descartes’ Rule of Signs

  • Rational Root Theorem

  • Synthetic Division (optional)

  • Multiplicity

Unit 5

Chapter Numbers: 4.5

  • Graphing rational functions

  • Oblique asymptotes

  • Removable discontinuities

  • Simplifying rational expressions

Trigonometry


Unit 6

Chapter Numbers: 5.1, 5.2, 5.3, 5.4, 5.5

  • Domain/Range of Inverse Functions

  • Logarithms

  • Graphing logarithmic functions

  • Simplifying logarithmic expressions

  • Change of Base Formula

  • Exponential growth/decay

  • Half-life

Unit 7

Chapter Numbers: 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 

  • Basic trigonometry functions: sin, cos, tan

  • Unit Circle

  • Basic trigonometry identities

  • Graphing trigonometric functions

    • Period, Amplitude, phase-shift

Unit 8

Chapter Numbers: 7.1, 7.2, 7.3, 7.4, 7.6

  • Pythagorean Trigonometric Identities

  • Cofunction Identities

  • Even/Odd Identities

  • Sum and Difference Formulae (Trig funcs)

  • Double Angle Identities

  • Proving Identities

  • Solving trigonometric equations

  • Inverse trigonometric functions

Analytic Geometry


Unit 1: Conics

  • Circles

  • Parabolas

    • Foci, Directrix, Latus recta

  • Ellipses

    • Foci, vertices, covertices, major axis, minor axis, latus recta

    • Eccentricity

  • Hyperbolas

    • Vertices, foci, asymptotes, eccentricity, latus recta

    • Directrix

Unit 2: Transformations

  • Terminology

    • Image, pre-image, translated, dilation, invariant, rotation.

  • Rotation matrix

  • Reflection matrix

  • Inverse dilation, inverse rotation, inverse reflection

  • Combining transformation matrices.

  • Translating axes

Unit 3: Conic Transformations

  • Rotating axes

  • “Eliminating the xy term”

Unit 4: Polar

  • Graphing

  • Conversions to Rectangular

  • Auxiliary Graphs

  • Circles, Parabolas, Ellipses, Hyperbolas in Polar

Unit 5: Vectors

  • Head, tail, magnitude

  • Dot product

    • Cosine dot product theorem

  • Cross product

    • Sine cross product theorem

  • 3D Vectors, 3D lines

  • Projections

  • 3D planes

    • Normal vector

  • Distance between points, planes, and lines.

Unit 6: Cycloids

  • Parametric equations

  • Graphing cycloids

    • Epicycloid, hypocycloid

Pre-Calc and Discrete Math


Unit 1: Counting

  • Permutations and Combinations

  • Nested sums

  • Ball and Urn

Unit 2: Probability

  • Basic and Conditional Probability

    • Probability trees

  • Binomial Probability

  • Poisson Probability

  • Recursive Probability

Unit 3: Induction

  • Proof by Induction

    • Basis step, inductive step

  • Divisibility induction

    • Mod function

  • Sequences

    • Explicit formula, recursive formula

Unit 4: Limits

  • Notation

  • Removable discontinuities with limits

  • End behavior

Unit 5: Graph Theory

  • Traveling Salesperson

    • Cycles, total routes, unique routes, vertex, edge, optimal solution

    • Nearest neighbor method

    • Sorted edges method

    • Spanning trees

      • Prim’s Algorithm

    • Christofides Algorithm

      • Eulerization

Unit 6: More Limits

  • Secants and Tangents

  • Instantaneous rate of change

  • Difference quotient

AP Calculus BC


Unit 1:

  • Limit Definition of a Derivative

  • Power Rule

  • Product Rule

  • Quotient Rule

  • Trig Derivatives

  • Chain Rule

  • Implicit Differentiation

  • Linearization

Unit 2:

  • Extreme Value Theorem

  • Intermediate Value Theorem

  • Mean Value Theorem

  • End behavior

  • Optimization

  • Related Rates

Unit 3:

  • Derivatives of inverses

  • Derivatives of exponential functions

  • Derivatives of logarithmic functions

  • Derivatives of inverse trigonometry functions

Unit 4:

  • Riemann Sums

  • Definite Integrals, Indefinite Integrals

  • Fundamental Theorem of Calculus

  • U-substitution

Unit 5:

  • L’ Hospital’s Rule

  • Area between curves

  • Volume of 3D solids

    • Disks, washers

    • Shells

  • Integral applications

Unit 6:

  • Integration by Parts

  • Partial Fractions

  • Improper Integrals

  • Arc Length

  • Trig Substitution

Unit 7:

  • Slope Fields

  • Euler’s Method

  • Separation of Variables

  • Population Growth

    • Logistic Growth, carrying capacity

Unit 8:

  • Derivatives of parametric equations

  • Vector calculus

    • Velocity, acceleration vectors, speed

  • Polar Arc Length

Unit 9:

  • N-th term test

  • Comparison Test

  • Integral Test

  • Limit Comparison Test

  • Alternating Series

    • Absolute Convergence

  • Ratio Test

Unit 10:

  • Power Series

    • Interval of convergence, radius of convergence, center

  • Taylor and Maclaurin Series

  • LaGrange Error Estimation

AP Computer Science

Textbook: Java Concepts Early Objects, Enhanced e-book, 9th edition


Chapters 1, 2, 3

  • Constructors

    • Default constructor, parameterized constructors

  • Methods

    • Notation, parameters, arguments, return values

  • Overloading methods and constructors

  • Implicit this

  • Object references, instances

  • Getter and setter methods

Chapter 4

  • Primitives, classes

  • Integer division, modulus, casting doubles to ints, powers

  • Edge cases

  • Usage of Epsilon when comparing doubles for equality

Chapter 5

  • Operators

  • Comparing floats

  • Comparing strings

  • DeMorgan’s Law

  • Short-Circuiting

Chapter 6

  • For loops

  • While loops

  • Sentinel values

  • Tracing


Chapter 7

  • Nested loops

  • Enhanced For loops

  • Side Effects

Chapter 8,9

  •  Object oriented programming

  • Polymorphism

  • Abstraction

  • Encapsulation

  • Superclass

  • Subclass

  • Inheritance

Chapter 13

  • Recursion

  • Trace and write recursive methods

  • Binary and Hexadecimal

  • Tail recursion

  • Helper methods

Chapter 14

  • Selection Sort

  • Bubble Sort

  • Insertion Sort

  • Merge Sort

Multivariable Calculus and Linear Algebra

Unit 1: Review

  • Parametric Equations

  • Calculus with Parametric Equations

  • Polar

  • Areas and Lengths in Polar

  • Coordinates in 3D/Vectors

  • Dot Product

  • Cross Product

  • Lines and Planes

  • Cylinders and Quadric Surfaces

Unit 2: Partial Derivatives

  • Functions of Several Variables

  • Limits and Continuity

  • Partial Derivatives

  • Tangent Planes and Linear Approximations

  • Chain Rule

  • Directional Derivatives, Gradient Vectors

  • Extrema

  • LaGrange Multipliers

Unit 3: 

  • Double Integrals over Rectangles

  • Double Integrals over General Regions

  • Double Integrals in Polar

  • Applications

  • Surface Area

  • Triple Integrals

    • Cartesian, Cylindrical, Spherical

  • Change of Variables

  • Center of Mass

Unit 4:

  • Vector Functions and Space Curves

  • Vector Fields

  • Line Integrals

  • Fundamental Theorem for Line Integrals

  • Green’s Theorem

  • Curl and Divergence

  • Parametric Surfaces and their Areas

  • Surface Integrals

  • Stokes’ Theorem

  • Divergence Theorem

Unit 5:

  • Differential Equations

    • Second-order linear equations

    • Nonhomogeneous Linear Equations

    • Applications

End of MV, start of LA

Unit 1:

  • Systems of Linear Equations

  • Gaussian Elimination

  • Matrix Operations

  • Inverse and Properties of Matrices

  • Elementary Matrices

  • Linear Systems and Invertible Matrices

  • Diagonal, Triangular, and Symmetric Matrices

  • Formal Definition of Functions, Matrix Transformations

  • Applications of Linear Systems

Unit 2

  • Cofactor Expansion

  • Row Reduction

  • Determinant Properties and Cramer’s Rule

  • Vectors in n-space

  • Norm, Dot Product, Distance in R^n

  • Orthogonality

  • Geometry of Linear Systems

  • Cross Product

Unit 3:

  • Real Vector Spaces

  • Subspaces

  • Linear Independence

  • Coordinates and Basis

  • Change of Basis

  • Row, Column, and Null Space

  • Rank, Nullity